Local-in-space criteria for blowup in shallow water and dispersive rod equations

نویسنده

  • LORENZO BRANDOLESE
چکیده

We unify a few of the best known results on wave breaking for the Camassa– Holm equation (by R. Camassa, A. Constantin, J. Escher, L. Holm, J. Hyman and others) in a single theorem: a sufficient condition for the breakdown is that u′0 + |u0| is strictly negative in at least one point x0 ∈ R. Such blowup criterion looks more natural than the previous ones, as the condition on the initial data is purely local in the space variable. Our method relies on the introduction of two families of Lyapunov functions. Contrary to McKean’s necessary and sufficient condition for blowup, our approach applies to other equations that are not integrable: we illustrate this fact by establishing new local-in-space blowup criteria for an equation modeling nonlinear dispersive waves in elastic rods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A BOUNDARY-FITTED SHALLOW WATER MODEL OF SIMULATE TIDE AND SURGE FOR THE HEAD BAY OF BENGAL – APPLICATION TO CYCLONE SIDR (2007) AND AILA (2009)

Severe Tropical Cyclones associated with surges frequently hits the coastal region of Bangladesh. For a reliable hydrodynamic model to simulate the severity of such cyclones, it is necessary to incorporate the meteorological and hydrological inputs properly. In order to incorporate the coastlines and the island boundaries properly in the numerical scheme a very fine grid resolution along the co...

متن کامل

On the Galerkin/Finite-Element Method for the Serre Equations

A highly accurate numerical scheme is presented for the Serre system of partial differential equations, which models the propagation of dispersive shallow water waves in the fully-nonlinear regime. The fully-discrete scheme utilizes the Galerkin / finiteelement method based on smooth periodic splines in space, and an explicit fourth-order Runge-Kutta method in time. Computations compared with e...

متن کامل

Derivation of asymptotic two-dimensional time-dependent equations for ocean wave propagation

A general method for the derivation of asymptotic nonlinear shallow water and deep water models is presented. Starting from a general dimensionless version of the water-wave equations, we reduce the problem to a system of two equations on the surface elevation and the velocity potential at the free surface. These equations involve a Dirichlet-Neumann operator and we show that all the asymptotic...

متن کامل

Space-time Least-squares Finite-element Method for Shallow-water Equations

In this paper, a space-time least-squares finite-element method for the 2D nonlinear shallow-water equations (SWE) is developed. The method can easily handle complex geometry, bed slope (source term), and radiation boundary condition without any special treatment. Other advantages of the method include: high order approximations in space and time can easily be employed, no upwind scheme is need...

متن کامل

A co-volume scheme for the rotating shallow water equations on conforming non-orthogonal grids

A co-volume scheme is introduced for the rotating shallow water equations, in which both velocity components are specified on cell edges, and the thickness variables evolve on both the primary and the dual cell centers. The scheme applies to generic, conforming and non-orthogonal staggered grids, including the widely used lat-lon quadrilateral grids and the Delaunay-Voronoi tessellations. It ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012